材料加工

自動車

最近の自動車用構造材料の変革(Ⅱ)

自動車のボディー骨格を造る際に排出されるCO2をいかに減らすか──。素材~骨格部品の製造工程まで「脱炭素」観点からの変革が進められている。今後、高張力鋼板(グリーンスチール)の冷間プレス材が主体となる方向が見えてきた。一方、米国テスラが「モデルY」のリアボディー部品への採用を公表したことから、アルミニウム合金で一体成型するギガプレスが注目を集めている。今後、溶接組み立てから溶湯加圧成型による低コスト化がEVトレンドとなる可能性が出てきた。
自動車

最近の自動車用構造材料の変革(Ⅰ)

鉄鋼業界は国内産業界で最も多くのCO2を排出しており、遅ればせながら脱炭素化に向け「グリーンスチール」の商品化を加速している。中でも、神戸製鋼は低CO2高炉鋼材”Kobenable Steel”を他社に先駆けて商品化し、低炭素Al合金板材も含めて日産自動車に供給を開始した。2023年春を目指して新型EVの「セレナe-POWER」、「アリア」や、中型SUVの新型「エクストレイル」などへの適用が進められている。
航空機

航空機の機体へのサメ肌加工

サメ肌を模した微細なリブレット加工が、流体による摩擦抵抗の低減に効果的なことは良く知られている。航空機の機体表面へのリブレット加工の実証試験が、航空各社(ルフトハンザ、ANA、JAL)進められている。1~2%程度の燃費削減が可能な技術で、CO2削減にも有効とされている。今後のリブレット加工の適用拡大には費用対効果が鍵となる。記録を争う高速水着では、それなりの成果を上げたが、経済的に成り立たなければ航空機では採用されない。 
航空機

航空機用構造材料の変革(Ⅳ)

航空機構造では、溶接が比較的難しいアルミニウム合金やチタン合金、溶接が不可能なCFRPなどが多用されているため、胴体外板同士の締結や外板と補強部材の締結などにはリベットやボルトによる機械継手が多く採用されており、機体の軽量化の障害となっている。そのため摩擦撹拌接合(FSW)や線形摩擦接合(LFW)などの高い信頼性を保持できる新しい接合技術の適用が望まれている。
航空機

航空機用構造材料の変革(Ⅲ)

バイパス比ターボファン・エンジンではファンブレード、ファンケース、ストラクチャルガイドベーン(SGV)を対象に、従来材料であるチタン合金やアルミニウム合金から、炭素繊維強化プラスチックスCFRPへの代替による軽量化が進められている。タービンの主要な高温部品である燃焼器、動翼、静翼についても、従来材料であるコバルトやニッケル基合金から、セラミックス基複合材料(CMC)への代替による軽量化が始められている。
航空機

航空機用構造材料の変革(Ⅱ)

米国ボーイングの中型ワイドボディ機B787では機体材料に占めるアルミニウム合金の重量比が20%に減少し、複合材料(CFRP、GFRPなど)の重量比が50%に高まった。欧州エアバスの中型ワイドボディ機A350XWB機ではアルミニウム合金の重量比が21%に減少し、CFRPの重量比53%に高まった。
航空機

航空機用構造材料の変革(Ⅰ)

航空機の燃料消費低減のために軽量化は重要課題であり、機体やエンジン部品(ファン、ファンケース、ファン動翼)への軽量合金や炭素繊維強化複合材料(CFRP:Carbon Fiber Reinforced Plastics)の適用開発が、従来から継続的に進められている。
自動車

自動車の接合・接着技術

現在、自動車で利用されている機械的締結はリベット接合やセルフピアスリベット締結である。また、抵抗スポット溶接、抵抗シーム溶接、低入熱アーク溶接、最近になってレーザー溶接が採用されている。次世代接合技術として摩擦撹拌接合(FSW)や熱可塑性樹脂(CFRTPを含む)/金属材料の接着技術が注目されている。
エネルギー

異種材料の継手設計について

形状不連続のない平板の場合でも、異種材料の接合界面端部近傍には材料不連続に起因する顕著な応力集中が生じる。そのためアルミ合金ー炭素鋼やCFRPー炭素鋼などの異種材料継手の設計法の概念を構築し、継手設計指針として体系的にまとめる必要がある。
自動車

自動車の軽量化に向けた変革

マルチマテリアル化の目的は、適材適所よるものづくりにある。また、この適材適所はガソリン車、ハイブリッド車、電気自動車、燃料電池車などの車種とは無関係に自動車に共通の課題である。これにより革新的な軽量化の実現が可能となる。