何故、急速に高まる核融合熱!(Ⅰ)

原子力

 世界的に異常気象を引き起こしている地球温暖化問題と、ロシアによるウクライナ侵攻に端を発した世界的なエネルギー危機を背景に、米国や英国を中心に次世代エネルギーの開発が加速されている。
 中でも、核融合の実用化は早くても2050年以降という予測が多かった中で、2024年にも核融合発電を始めるというベンチャー企業が出てきており、急速に注目度が上昇している。

直近で注目が集まる理由

 世界的に異常気象を引き起こしている地球温暖化問題への対策と、ロシアによるウクライナ侵攻に端を発した世界的なエネルギー危機を背景として、従来の化石燃料からの脱却を目指す次世代エネルギーの開発が米国や英国を中心に加速されている。

 2022年11月、米国ローレンス・リバモア国立研究所の国立点火施設(NIF:National Ignition Facility)で、核融合反応を起こすために投入したエネルギーよりも多くのエネルギーを発生させることに世界で初めて成功したことが、大きな話題となった。
 また、2023年5月には、米国核融合スタートアップのHelion Energy(ヘリオン・エナジー)が、核融合反応で発電した電力を2028年までにマイクロソフトに供給する契約を締結したことも、おおきな注目を集めた。

 これまでの核融合炉開発は、国際協力でフランスに建設中の国際熱核融合実験炉(ITER)に代表されるトカマク型磁気閉じ込め核融合炉が、実用化に最も近いとして進められてきた経緯がある。
 しかし、上記の米国ローレンス・リバモア国立研究所の成果は、大型レーザによる慣性閉じ込め核融合炉(レーザ核融合)を使い、Helion Energyが進めているのは逆転磁場配位型磁気閉じ込め核融合炉と炉型が大きく異なっている。

 さらに、Helion Energyは、2024年にも発電運転を始めて商用発電開始は2028年と設定し、米国マサチューセッツ工科大学(MIT)発のスタートアップCommonwealth Fusion Systems(CFS)は、2025年にも核融合炉を稼働させて2030年代初頭に商用発電を開始する計画を公表している。

核融合発電とは?

既存の原発との違い

 核融合発電と既存の原子力発電では、発電原理が異なる。核融合発電は核融合反応からエネルギーを取り出すが、既存の原子力発電所は核分裂反応で発生する熱を利用して発電する。
 そのため、既存の原発では原子炉の中で核分裂反応が連鎖的に起こるため、暴走しないように制御しながら運転する必要があるが、核融合は原理的に暴走が起こらない。さらに、核分裂による発電は高レベル放射性廃棄物を排出するが、核融合発電は放射性廃棄物が出るが高レベルではない

 また、既存の原発では燃料に鉱物ウランを濃縮して用いるが、核融合発電の燃料は一般に水素の同位体である重水素と三重水素が用いられ海水中から取り出せる。ただし、核融合反応を持続させるには高温・高圧状態が必要で、現時点では技術的に困難であり実用化は2050年以降と考えられてきた。 

 これまで核融合炉開発では、磁場により超高温プラズマを保持する磁気閉じ込め核融合炉と、大出力レーザなどを使って極短時間の爆縮を繰り返す慣性閉じ込め核融合炉の2炉型が主流であった。
 慣性閉じ込め核融合炉高繰り返し爆縮を行うという技術的な困難さもあり、入力と出力が等しくなる臨界プラズマ条件が達成出来ていなかった。そのため、1950年代に旧ソ連で開発されたトカマク型磁気閉じ込め核融合炉最も実用化に近い炉型といわれてきた。

 重水素と三重水素による核融合反応を持続的に起こすためには、プラズマの温度、密度、閉じ込め時間が重要パラメーターである。外部から加熱等で注入するエネルギーとプラズマの核融合反応で生じるエネルギーが等しい状態は臨界プラズマと呼ばれている。
 この臨界プラズマを維持するための条件がローソン条件である。代表的なローソン条件としてよく取り上げられる値は、プラズマ温度:1億℃、密度:100兆個/cm3、閉じ込め時間:1秒である。

磁気閉じ込め核融合炉による発電の仕組み

 磁気閉じ込め核融合炉は、超高温プラズマを保持するため強力な磁場と超高真空が必須で、大型の真空容器の外側に超伝導コイルが巻かれている。燃料には核融合反応が起きやすい重水素(2H または D 、デューテリウム)と三重水素3H またはT、トリチウム)が用いられ、DT反応と呼ばれている

 自然に存在する水の電気分解などで重水素は比較的容易に取り出せるが、希薄なトリチウムの取り出しは難しく、ブランケット内にリチウム(Li)を入れて核融合反応発生した中性子照射によりトリチウムに変換して回収し、重水素と共にプラズマ中に燃料として注入されている。

 プラズマを1億℃以上の超高温にするため1MeV程度の大出力粒子ビーム、あるいは大出力の電磁波(高周波)が使われる。核融合反応で発生するのはヘリウム(He)と中性子で、Heのアルファ崩壊で生じたアルファ線はステンレス鋼製の厚いブランケットに吸収され熱エネルギーに変換される。
 この熱をブランケット内の配管中を流れる冷却媒体で取り出し、蒸気発生器で高温高圧の蒸気に変換して蒸気タービンを回転させ、発電する仕組みが一般的に考えられている。

 磁気閉じ込め核融合炉のプラズマは、非常に微妙な制御の上で核融合反応を続けるため、予想外のことが起きると保温特性が低下して温度低下が起き、自動的にDT反応速度が低下して停止する。そのために安全性は高いといわれている。

 また、核融合炉から排出されるのはヘリウムのみで、使用済燃料は出ないために高レベル放射性廃棄物はない。しかし、中性子照射により定期交換するブランケットや、運転終了した核融合炉の中心部分は、ベータ線やガンマ線を出す放射性廃棄物(高ベータ・ガンマ廃棄物)であり管理が必要
 ただし、核融合炉用に低放射化フェライト鋼が開発されており、その放射線の減衰は比較的速く、100年程度で大部分は再使用可能なレベルに低減するため、管理が必要な廃棄物は少量である。

図1 磁気閉じ込め核融合炉による発電の仕組み  出典:日本原子力研究開発機構資料

コメント

タイトルとURLをコピーしました