リチウムイオン電池の現状(Ⅱ)

自動車

 世界的な脱炭素化の流れの中で、EVメーカーは市場への投入機種を拡大し、低価格帯の車両を目指している。そのため車両価格の3割を占める車載電池のさらなる低コスト化が不可欠である。

 米国24Mテクノロジーズが開発した乾式(ドライ)電極技術は、電解液を正極材料や負極材料と混合してスラリー状にし、アルミニウム箔に塗布して液体成分を蒸発させずに使用することで、乾燥工程を省略でき、大幅な低コスト化を可能とした。これを契機に「半固体電池」の開発が急進している。

LIBの製造プロセス

進む低コスト化

 過去を振り返ってみよう。2000年代に入りハイブリッド車が本格化すると、それまで主力であったニッケル水素電池からリチウムイオン電池への置き換わりが始まった。この動きは2018年頃からのEVシフトが本格化すると決定的なものとなる。

 ニッケル水素電池(エネルギー密度:40~90Wh/kg)は負極に水素吸蔵合金、正極にオキシ水酸化ニッケル、電解液に水酸化カリウムなどのアルカリ水溶液を用いた二次電池である。 鉛蓄電池(20~40Wh/kg)に比べて高性能で、過充電・過放電に強く急速充放電が可能なため多用されてきた。

 一方、リチウムイオン電池(LIB)はエネルギー密度が150~270Wh/kgと高くメモリー効果が小さいことから急速に普及した。しかし、過充電や過放電に弱いためコントローラーが不可欠であり、正極のリチウム含有金属酸化物が高価なため、低コスト化に向けた開発が継続的に進められてきた

 世界的な脱炭素化の流れの中で、EVメーカーは市場への投入機種を拡大し、低価格帯の車両を目指している。そのため車両価格の3割を占める車載電池のさらなる低コスト化が不可欠である。

 英国調査会社IHSマークイットによると、車載用リチウムイオン電池の平均価格は2012年から20年にかけて82%下がり、2023年には97ドル/kWhと予想している。 

図4 車載用リチウムイオン電池の低価格傾向

 このような低コスト化には、EV需要の増加に伴うLIBの量産効果が大きく影響するが、他方で原材料の調達からLIB製造に至るまでの製造プロセスの革新が不可欠である。

従来のLIB製造工程の問題点

 一般的なLIBの製造工程では、正極材料や負極材料に液状のバインダーを混合してスラリー状にする。得られたスラリーをアルミニウム箔(集電箔)に塗布した後、乾燥させて溶剤回収し、圧延して均一厚さのシート状とし、所定の寸法に裁断して正極と負極を製造する。

 その後、正極、セパレーター、負極を交互に積層し、組立てた後にタブを溶接して容器に封入し、容器内に電解液を注液して完成である。充放電検査により、特性を確認する。

 この製造プロセスのうち、乾燥炉は長さ50~100mと超大な装置となり、設備投資額が莫大となる。また、この乾燥工程が多くのCO2排出の原因となっている。

図5 LIBの製造工程とドライ電極技術によるプロセス合理化
出典:日経クロステック

乾式電極(ドライ電極)技術によるプロセス合理化

 2010年に設立された米国新興電池メーカーの24M Technologies(24Mテクノロジーズ)が、車載用蓄電池の製造設備への投資軽減と製造コスト削減を目指して、乾式電極技術によるLIB製造プロセスの合理化を進めていると報じられた。

 伊藤忠商事、フォルクスワーゲン(VW)、富士フイルムが出資する24Mテクノロジーズの乾式電極技術は、バインダーの代わりに電解液を正極材料や負極材料と混合してスラリー状にし、アルミニウム箔に塗布して液体成分を蒸発させることなく電極にすることで、乾燥工程を省略できる。

 可燃性の電解液の代わりにゲル・粘土・樹脂など半固体状の物質を使うことで、液漏れや発火の可能性は低減され、既存のリチウムイオン電池の生産ラインを活用できる利点が大きい。この半固体電解質に関しては、様々な提案が行われており、一部では固体電池と称するなど定義が定まっていない。

 24Mテクノロジーズは流動性のあるスラリーを用いるため、これを「半固体電池」と称している。これにより電池製造工程を1/3に短縮し、設備投資を60%以上削減できるとしている。ライセンス先の企業を合計した生産量は2022年度で0.2GWhで、2026年度には80.5GWhに増加する。

図6 半固体(リチウムイオン)電池の原理

 一方、2023年4月、ドイツFraunhofer-Gesellschaft(フラウンホーファー研究機構)のレーザー技術研究所(ILT)は、負極材の乾燥工程でダイオードレーザー(波長980nm、出力6kW)照射により、黒鉛粒子が発熱して液体が蒸発し、従来よりも高い蒸発速度が得られることを発表した。

半固体リチウムイオン電池の開発状況

 2020年7月、日本ガイシは、セラミックス素材に電解液を染み込ませた半固体電池である超小型電池「EnerCera(エナセラ)」をIoT機器用に開発した。LIBの3倍となる9千回の充放電が可能で、山梨県富士吉田市でコイン型電池の量産を始めた。

 2021年2月、京セラは24Mテクノロジーズ技術を使い半固体電池の量産化を開始した。住宅用蓄電システム2万台/年(容量:200MWh/年)の生産能力を有するが、車載用蓄電池への拡販も始めている。
 電極に独自開発の電解液を練り込んで粘土状にする技術を確立し、クレイ型リチウムイオン蓄電池の開発に成功し、従来型の約1.5倍の長寿命を実現した。電極にはリン酸鉄リチウムを使い、セパレータと外装フィルムで正極と負極を完全に分離するユニットセル構造を採用している。

 2021年1月、中国EVメーカー上海蔚来汽車(NIO)は、2022年に独自開発した固体電池を搭載した新型車を投入すると発表。中大型セダン「ET7」(44.8万元~)と中型セダン「ET5」(32.8万元~)で、いずれも航続距離:1000kmを超える。蓄電池ををレンタルで使う仕組みも準備している。
 エネルギー密度は360Wh/kg、負極にはシリコン・カーボン複合負極材を採用し、正極にはニッケル正極材とナノレベルのコーティング技術を採用した。

 2021年12月、フォルクスワーゲン(VW)グループは、EV向けバッテリー事業強化のために3社(ユミコア、24Mテクノロジーズ、バルカン・エナジー・リソーシズ)との戦略的提携を発表した。
 ベルギーのユミコアとは、欧州にあるVWの蓄電池工場に正極材料を供給する合弁会社を設立する。2025年の生産開始、生産能力は20GWh/年から始め、2029年までに160GWh/年を目指している。
 米国の24Mテクノロジーズとは、新たなバッテリー製造技術の実用化に向けて工場の生産技術の開発に取り組む。低生産コストの車載用蓄電池の開発を進め、2025~2030年の量産化を計画している。
 オーストラリアのバルカン・エナジー・リソーシズとは、2026~2031年における水酸化リチウムの調達に係る長期契約を締結した。

 VWグループの半固体リチウムイオン電池戦略:
 2021年12月、VWグループは、蓄電池事業に特化した法人を新設し、同社が電池生産に係る開発から工場の生産管理までを行い、将来的には原材料のリサイクル事業も担う。
 2019年6月、ドイツ北部のニーダーザクセン州ザルツギッターに蓄電池工場を設立し、2025年の操業開始を予定している。同工場が蓄電池事業のハブ拠点として拡張され、電池の量産開始までに総額約20億ユーロを投資し、2030年までに、欧州で6つの蓄電池工場を稼働させる予定。

 2021年12月、山形大学発バッテリー・イノベーション・ハブ(BIH)と大阪ソーダは、充放電を繰り返しても分解しにくいゲル状の電解質を採用し、寿命がLIBの2倍の半固体電池を開発した。CO2や排出量や調達コストを5割削減した。2027年にもEVやドローン向けに用途を広げる狙いだ。

 2022年9月、エンビジョンAESCは、2024年の量産開始に向け茨城県茨城町で新工場を建設している。マザー拠点と位置づける同工場への導入に向け、乾式電極技術の開発を加速している。また欧米で建設中の新工場でも同技術を活用した生産設備の導入を見込み、世界で競争力の向上につなげる。

 2022 年 12月、日本電産は、24M Technologiesよりライセンスされる半固体リチウムイオン電池セルを製造する FREYR Battery(フレイル・バッテリー)と、合弁会社Nidec Energy AS(ニデック エナジー AS)を設立した。ノルウェーのモー・イ・ラーナ市に生産拠点を置く。  

 テスラ・モーターズ゙は2022年稼働のベルリン電池工場で乾式電極技術を採用し、設備面積とエネルギー消費を1/10に低減できるとしている。テスラの乾式電極技術は、2019年に買収した米国マクスウェル・テクノロジーズの技術に基づいているようで、24M Technologiesの技術とは異なる。
 2023年3月、テスラでもドライ電極の製造が軌道に乗っていることが明らかとなった。

 2023年4月、中国CATL(寧徳時代新能源科技)は「上海国際自動車ショー 2023」で、「凝聚態電池(Condensed Battery)」発表した。エネルギー密度:最大500Wh/kgと高い点が特徴である。電池の詳細は明らかにされていないが、半固体蓄電池の一種と考えられている。

 2023年5月、ノルウェーのモー・イ・ラーナに小規模ラインを開設して半固体リチウムイオン電池の製造を開始したFREYR Batteryは、数十億ドルを投資して2025年までにノルウェーの「Giga Arctic」とジョージア州アトランタの「Giga America」の工場を建設する計画では公表した。
 生産能力は合計で50GWh/年になる予定で、製造工程の簡素化によりコスト25%削減を実現した。

コメント

タイトルとURLをコピーしました